+7(495)133-95-09 МСК
    zakaz@ventilatorry.ru

Работаем с 09:00 до 18:00 Пн-Пт

Вентиляторы и их характеристики

  • 27 февраля 2017 16:02:25
  • Отзывов: 0
  • Просмотров: 42865
  • 0


Вентиляторы – устройства, предназначенные для создания воздушного (в общем случае, газового) потока. Основная задача, которую решают с применением этих устройств в оборудовании для вентиляции, кондиционирования и воздухоподготовки – создание в системе воздуховодов условий для перемещения воздушных масс от точек забора до точек выброса или потребителей.

Для эффективной работы оборудования воздушный поток, создаваемый вентилятором должен преодолеть сопротивление системы воздуховодов, обусловленное поворотами магистралей, изменением их сечения, появлением турбулентностей и прочими факторами.

В результате имеет место перепад давления, который является одним из важнейших характеристических показателей, влияющих на выбор вентилятора (кроме него основную роль играют производительность, мощность, уровень шума и т.д.). Зависят эти характеристики, прежде всего, от конструкции устройств и используемых принципов работы.

Все множество конструкций вентиляторов разделяют на несколько основных типов:


  • Радиальные (центробежные);
  • Осевые (аксиальные);
  • Диаметральные (тангенциальные);
  • Диагональные;
  • Компактные (кулеры)


Центробежные (радиальные) вентиляторы

В устройствах этого типа происходит всасывание воздуха по оси рабочего колеса и выброс его под действием центробежных сил, развиваемых в зоне его лопастей, в радиальном направлении. Использование центробежных сил позволят использовать такие устройства в случаях, когда требуется высокое давление.

Характеристики радиальных вентиляторов в значительной мере зависят от конструкции рабочего колеса и формы лопастей (лопаток).

По этому признаку крыльчатки радиальных вентиляторов разделяют на устройства с лопатками:


  • загнутыми назад;
  • прямыми, в том числе, отклоненными;
  • загнутыми вперед.
На рисунке упрощенно показаны типы крыльчаток (рабочее направление вращения колес обозначено стрелками).


Рабочие колеса с загнутыми назад лопастями

Для такой крыльчатки (B на рисунке) характерна значительная зависимость производительности от давления. Соответственно, радиальные вентиляторы такого типа оказываются эффективны при работе на восходящей (левой) ветви характеристики. При их использовании в таком режиме достигается уровень эффективности до 80%. При этом геометрия лопаток позволяет добиться низкого уровня рабочего шума.

Основной недостаток таких устройств – налипание находящихся в воздухе частиц на поверхности лопастей. Поэтому такие вентиляторы не рекомендуется применять для загрязненных сред.

Рабочие колеса с прямыми лопатками

В таких крыльчатках (форма R на рисунке) устранена опасность загрязнения поверхности содержащимися в воздухе примесями. Такие устройства демонстрируют эффективность до 55% . При использовании прямых отклоненных назад лопастей характеристики приближаются к показателям устройств с загнутыми назад лопатками (достигается эффективность до 70%).

Крыльчатки с загнутыми вперед лопастями

Для вентиляторов, использующих такую конструкцию (F на рисунке) влияние изменения давления на воздушный поток незначительно.

В отличие от крыльчаток с загнутыми назад лопастями наибольшая эффективность таких рабочих колес достигается при работе на правой (нисходящей) ветви характеристики, при этом ее уровень составляет до 60%. Соответственно, при прочих равных, вентилятор с крыльчаткой типа F выигрывает у устройств, снабженных крыльчаткой, по размерам рабочего колеса и общим габаритным показателям.


Осевые (аксиальные) вентиляторы

Для таких устройств и входной и выходной воздушный потоки направлены параллельно оси вращения крыльчатки вентилятора.

Главным недостатком таких устройств является низкая эффективность при использовании варианта установки со свободным вращением.

Значительное повышение эффективности достигается при заключении вентилятора в цилиндрический корпус. Существуют и другие методы улучшения характеристик, например, размещение непосредственно за рабочим колесом направляющих лопастей. Такие меры позволяют добиться эффективности аксиальных вентиляторов в 75% без использования направляющих лопастей и даже 85% при их установке.


Диагональные вентиляторы

При осевом воздушном потоке невозможно создать значительный уровень эквивалентного давления. Добиться увеличения статического давления позволяет использование для создания воздушного потока дополнительных сил, например, центробежных, которые действуют в радиальных вентиляторах.

Диагональные вентиляторы являются своеобразным гибридом аксиальных и радиальных устройств. В них всасывание воздуха осуществляется в направлении, совпадающем с осью вращения. За счет конструкции и расположения лопастей рабочего колеса достигается отклонение воздушного потока на 45 градусов.

Таким образом, в движении воздушных масс появляется радиальная составляющая скорости. Это позволяет добиться увеличения давления за счет действия центробежных сил. Эффективность диагональных устройств может составлять до 80%.


Диаметральные вентиляторы

В устройствах этого типа поток воздуха всегда направлен по касательной к рабочему колесу.

Это позволяет добиться значительной производительности даже при малых диаметрах крыльчатки. Благодаря таким особенностям диаметральные устройства получили распространение в компактных установках, таких как воздушные завесы.

Эффективность вентиляторов, использующих этот принцип действия, достигает уровня в 65%.


Аэродинамическая характеристика вентилятора

Аэродинамическая характеристика отражает зависимость расхода (производительности) вентилятора от давления.

На ней находится рабочая точка, показывающая актуальный расход при определенном уровне давления в систем.


Характеристика сети

Сеть воздуховодов при различных значениях расхода оказывает различное сопротивление движению воздуха. Именно это сопротивление определяет давление в системе. Отображается эта зависимость характеристикой сети.

При построении аэродинамической характеристики вентилятора и характеристики сети в единой систем координат рабочая точка вентилятора находится на их пересечении.


Расчет характеристики сети

Для построения характеристик сети используется зависимость

dP=k*q2

В этой формуле:


  • dP – давление вентилятора, Па;
  • q – расход воздуха, куб.м/ч или л/мин;
  • k – постоянный коэффициент.
Характеристика сети строится следующим образом.



  1. На аэродинамическую характеристику наносится первая точка, соответствующая рабочей точке вентилятора. К примеру, работает при давлении 250 Па, создавая воздушный поток 5000 куб.м/ч. (точка 1 на рисунке).
  2. По формуле определяется коэффициент kk = dP/q2Для рассматриваемого примера его величина составит 0.00001.
  3. Произвольно выбираются несколько отклонений давления, для которых пересчитывается расход.К примеру, при отклонения давления -100 Па (результирующая величина 150 Па) и +100 Па (значение 350 Па), рассчитанный по формуле расход воздуха составит 3162 и 516 куб.м/ч соответственно.
Полученные точки наносятся на график (2 и 3 на рисунке) и соединяются плавной кривой.


Каждому значению сопротивления сети воздуховодов соответствует собственная характеристика сети. Строятся они аналогичным образом.

В результате, при сохранении скорости вращения вентилятора, рабочая точка смещается по аэродинамической характеристике. При увеличении сопротивления рабочая точка из положения 1 смещается в положение 2, что вызывает снижение расхода воздуха. Наоборот, при уменьшении сопротивления (переход в точку 3 а линии С) расход воздуха увеличится.

Таким образом, отклонение реального сопротивления системы воздуховодов от расчетного приводит к несоответствию величины воздушного потока проектным значениям, что может отрицательно сказаться на эксплуатационных показателях системы в целом. Главная опасность такого отклонения заключается в невозможности для вентиляционных систем эффективно выполнять возложенные на них задачи.

Компенсировать отклонение расхода воздуха от расчетного можно за счет изменения скорости вращения вентилятора. При этом получается новая рабочая точка, лежащая на пересечении характеристики сети и той аэродинамической характеристики из семейства, которая соответствует новой скорости вращения.

Соответственно, при повышении или уменьшении сопротивления потребуется отрегулировать скорость вращения таким образом, чтобы рабочая точка переместилась в положение 4 или 5 соответственно.

В этом случае наблюдается отклонение давления от расчетной характеристики сети (величина изменений отображена на рисунке).

На практике появления таких отклонений говорит о том, что режим работы вентилятора отличается от того, который был рассчитан из соображений максимальной эффективности. Т.е. регулирование скорости как в сторону увеличения, так и в сторону снижения ведет к потере эффективности работы вентилятора и системы в целом.


Зависимость эффективности вентиляторов от характеристик сети

Для упрощения выбора вентилятора на его аэродинамических характеристиках строят несколько характеристик сети. Чаще всего используются 10 линий, номера которых удовлетворяют условию

L = (dPd / dP)1/2

Здесь:


  • L – номер характеристики сети;
  • dPd – динамическое давление, Па;
  • dP – величина общего давления.
На практике это означает, что в рабочей точке на каждой из построенных линий воздушный поток вентилятора составляет соответствующую величину от максимальной. Для линии 5 – это 50%, для линии 10 – 100% (вентилятор свободно дует).


При этом эффективность вентилятора, которая определяется соотношением

η = dP * q / P

где:


  • dP – общее давление, Па;
  • q – расход воздуха, куб.м/ч;
  • P – мощность, Вт
может оставаться неизменной.


В этом отношении интерес представляет сравнение эффективности радиальных вентиляторов с загнутыми назад и вперед лопастями рабочего колеса. Для первых максимальное значение этого показателя нередко оказывается выше, чем для вторых. Однако, такое соотношение сохраняется только при работе в области характеристик сети, соответствующим меньшему расходу при заданном значении давления.

Как видно из рисунка, при высоких уровнях расхода воздуха для получения равной эффективности вентиляторам с загнутыми назад лопатками потребуются больший диаметр рабочего колеса.


Аэродинамические потери в сети и правила монтажа вентиляторов

Технические характеристики вентиляторов соответствуют указанным производителем в технической документации в том случае, если выполняются требования по их установке.

Основным из них является монтаж вентилятора на прямом участке воздуховода, причем его длина должна составлять не менее одного и трех диаметров вентилятора со стороны всасывания и нагнетания соответственно.

Нарушение этого правила ведет к увеличению динамических потерь, и, как следствие, к росту перепада давления. При увеличении такого перепада расход воздуха может значительно уменьшится, по сравнению с расчетными значениями.

На уровень динамических потерь, производительность и эффективность влияет множество факторов. Соответственно, при установке вентиляторов необходимо выполнять и другие требования.

Со стороны всасывания:


  • вентилятор устанавливают на расстоянии не менее 0.75 диаметра до ближайшей стены;
  • сечение входного воздуховода не должно отличаться от диаметра входного отверстия более чем на +12 и -8%;
  • длина воздуховода со стороны забора воздуха должна быть больше 1.0 диаметра вентилятора;
  • наличие препятствий для прохождения воздушного потока (демпферов, ответвлений и др.) недопустимо.
Со стороны нагнетания:
  • изменение поперечного сечения воздуховода не должно превышать 15% и 7% в сторону уменьшения и увеличения соответственно;
  • длина прямолинейного участка трубопровода на выходе должна составлять не менее 3-х диаметров вентилятора;
  • для уменьшения сопротивления не рекомендуется использовать отводы под углом 90 градусов (при необходимости поворота магистрали их следует получить из двух отводов по 45 градусов).


Требования к удельной мощности вентиляторов


Высокие показатели энергоэффективности – одно из главных требований, которое применяется в европейских странах ко всему оборудованию, в том числе, и к системам вентиляции зданий. В соответствии с этим Шведским институтом внутреннего климата (Svenska Inneklimatinsitutet) была разработана концепция интегральной оценки эффективности для вентиляционного оборудования, основанная на так называемой удельной мощности вентиляторов.

Под этим показателем понимается отношение общей энергоэффективности всех входящих в систему вентиляторов к суммарному воздушному потоку в вентиляционных каналах здания. Чем ниже полученное в результате значение, тем эффективность оборудования выше.

Такая оценка легла в основу рекомендаций по покупке и установке вентиляционных систем для различных секторов и отраслей. Так для коммунальных зданий рекомендованное значение не должно превышать 1.5 при установке новых систем и 2.0 для оборудования после ремонта.



 
Оставить отзыв  ↓
 
Ещё никто не оставил отзывов.