ebm-papst Mulfingen GmbH \& Co. KG

Bachmühle 2
D-74673 Mulfingen
Phone +49 (0) 7938 81-0
Fax +49 (0) 7938 81-110
info1@de.ebmpapst.com
www.ebmpapst.com

CONTENTS

1. SAFETY REGULATIONS AND INFORMATION 1

1.1 Hazard levels for warnings 1
1.2 Staff qualifications
1.3 Basic safety rules
1.4 Voltage11.5 Safety and protective features2
1.6 Electromagnetic radiation 2
1.7 Mechanical movement 2
1.8 Emissions 2
1.9 Hot surface 2
1.10 Storage 2
2. INTENDED USE 3
3. TECHNICAL DATA 4
3.1 Product drawing 4
3.2 Nominal data 5
3.3 Data according to ErP Directive 5
3.4 Technical description 5
3.5 Mounting data 5
3.6 Transport and storage conditions 6
3.7 Electromagnetic compatibility 6
4. CONNECTION AND STARTUP 6
4.1 Mechanical connection 6
4.2 Electrical connection 6
4.3 Connection in terminal box 7
4.4 Connection diagram 8
4.5 Opening additional cable glands 9
4.6 Checking connections 9
4.7 Switching on the device 9
4.8 Switching off the device 9
5. INTEGRATED PROTECTIVE FEATURES 9
6. MAINTENANCE, MALFUNCTIONS, POSSIBLE 10
CAUSES AND REMEDIES
6.1 Cleaning 10
6.2 Safety inspection 10
6.3 Disposal 11

1. SAFETY REGULATIONS AND INFORMATION

Read these operating instructions carefully before starting work on the device. Observe the following warnings to prevent malfunctions or danger to persons.
These operating instructions are to be regarded as part of the device.
The device is only to be sold or passed on together with the operating instructions.
These operating instructions may be duplicated and distributed to inform about potential dangers and their prevention.

1.1 Hazard levels for warnings

These operating instructions use the following hazard levels to indicate potentially hazardous situations and important safety regulations:

DANGER
Indicates an imminently hazardous situation which will result in death or serious injury if the specified actions are not taken. Compliance with the instructions is imperative.

WARNING

Indicates a potentially hazardous situation which can result in death or serious injury if the specified actions are not taken. Exercise extreme caution while working.

CAUTION

Indicates a potentially hazardous situation which can result in minor or moderate injury or damage to property if the specified actions are not taken.

NOTE

A potentially harmful situation can occur and, if not avoided, can lead to property damage.

1.2 Staff qualifications

The device may only be transported, unpacked, installed, operated, maintained and otherwise used by suitably qualified, trained and authorized technical staff.
Only authorized specialists are permitted to install the device, to carry out a test run and to perform work on the electrical installation.

1.3 Basic safety rules

The safety hazards associated with the device must be assessed again following installation in the final product.
Note the following when working on the device:
\Rightarrow Do not perform any modifications, additions or conversions on the device without the approval of ebm-papst.

1.4 Voltage

\Rightarrow Check the device's electrical equipment at regular intervals; see Chapter 6.2 Safety inspection.
\Rightarrow Replace loose connections and defective cables immediately.

DANGER

Electrically charged device
Risk of electric shock
\rightarrow When working on an electrically charged device, stand on a rubber mat.

WARNING

Live terminals and connections even with device
switched off
Electric shock
\rightarrow Wait five minutes after disconnecting the voltage at all poles before opening the device.

CAUTION

In the event of a fault, the rotor and the impeller will be energized
The rotor and the impeller have basic insulation.
\rightarrow Do not touch the rotor and impeller once installed.

CAUTION

If control voltage or a stored speed set value is applied, the motor will restart automatically, e.g. after a power failure.
Risk of injury
\rightarrow Keep out of the device danger zone.
\rightarrow When working on the device, switch off the line voltage and ensure that it cannot be switched back on.
\rightarrow After working on the device, remove any tools or other objects from the device.

1.5 Safety and protective features

DANGER

Protective device missing and protective device not functioning
Without a protective device there is a risk of serious injury, for instance if the hands reach or are sucked into the device during operation.
\rightarrow Operate the device only with a fixed protective device and guard grille.\# The fixed protective device must be able to withstand the kinetic energy of a fan blade that becomes detached at maximum speed. There must not be any gaps which it is possible to reach into with the fingers, for example.
\rightarrow The device is a built-in component. As the operator, you are responsible for ensuring that the device is secured adequately.
\rightarrow Stop the device immediately if you notice a missing or ineffective protective device.

1.6 Electromagnetic radiation

Interference from electromagnetic radiation is possible, e.g. in conjunction with open- and closed-loop control devices.
If impermissible radiation levels occur following installation, appropriate shielding measures have to be taken by the user.

NOTE

Electrical or electromagnetic interference after installing the device in customer equipment.
\rightarrow Verify that the entire setup is EMC-compliant.

1.7 Mechanical movement

DANGER

Rotating device
Risk of injury to body parts coming into contact with the rotor or the impeller.
\rightarrow Secure the device against accidental contact.
\rightarrow Before working on the system/machine, wait until all parts have come to a standstill.

WARNING

Rotating device

Long hair and dangling items of clothing, jewelry and the like can become entangled and be pulled into the device. Injuries can result.
\rightarrow Do not wear any loose-fitting or dangling clothing or jewelry while working on rotating parts.\#Protect long hair with a cap.

1.8 Emissions

WARNING

Depending on the installation and operating conditions, the sound pressure level may exceed $70 \mathrm{~dB}(\mathrm{~A})$.
Risk of noise-induced hearing loss
\rightarrow Take appropriate technical safety measures.
\rightarrow Protect operating personnel with appropriate safety equipment such as hearing protection.
\rightarrow Also observe the requirements of local agencies.

1.9 Hot surface

CAUTION
High temperature on electronics housing
Risk of burns
\rightarrow Ensure sufficient protection against accidental contact.

1.10 Storage

\Rightarrow Store the device, partially or fully assembled, in a dry and weatherproof manner in the original packaging in a clean environment.
\Rightarrow Protect the device against environmental effects and dirt until final installation.
\Rightarrow We recommend storing the device for no longer than one year in order to guarantee trouble-free operation and the longest possible service life.
\Rightarrow Even devices explicitly intended for outdoor use are to be stored as described prior to commissioning.
\Rightarrow Maintain the storage temperature, see Chapter 3.6 Transport and storage conditions.
\Rightarrow Make sure that all cable glands are fitted with dummy plugs.

ВЕНТИЛЯТОРЫ.RU

2. INTENDED USE

The device is exclusively designed as a built-in device for conveying air according to its technical data.
Any other usage above and beyond this does not conform with the intended purpose and constitutes misuse of the device.
Customer equipment must be capable of withstanding the mechanical and thermal stresses that can arise from this product. This applies for the entire service life of the equipment in which this product is installed.

Intended use also includes

- conveying air at an ambient air pressure between 750 mbar and 1050 mbar.
- Using the device within the permitted ambient temperature range; see Chapter 3.6 Transport and storage conditions and Chapter 3.2 Nominal data.
- Operating the device with all protective devices.
- Following the operating instructions.

Improper use

In particular, operating the device in the following ways is prohibited and could be hazardous:

- Operating the device in an unbalanced state, e.g. due to dirt deposits or ice formation.
- Opening the terminal box during operation.
- Conveying air that contains abrasive particles.
- Conveying highly corrosive air, e.g. salt spray. Exception: devices designed for salt spray and correspondingly protected.
- Conveying air with high dust content, e.g. suctioning off sawdust.
- Operating the device close to flammable materials or components.
- Operating the device in an explosive atmosphere.
- Using the device as a safety component or to perform safety-related functions.
- Operation with completely or partially disassembled or manipulated protective devices.
- In addition, all applications not listed among the intended uses.

3. TECHNICAL DATA

3.1 Product drawing

All dimensions in mm .

$\mathbf{1}$	Direction of air flow "V"
$\mathbf{2}$	Max. clearance for screw 10 mm
3	Tightening torque $1.5 \pm 0.2 \mathrm{Nm}$
4	Cable diameter min. 4 mm, max. 10 mm, tightening torque $2.5 \pm 0.4 \mathrm{Nm}$

3.2 Nominal data

Motor	M3G084-DF
Phase	1~
Nominal voltage / VAC	230
Nominal voltage range / VAC	200 .. 277
Frequency / Hz	50/60
Method of obtaining data	ml
Speed (rpm) / min-1	870
Power consumption / W	180
Current draw / A	1.2
Max. back pressure / Pa	70
Min. ambient temperature $/{ }^{\circ} \mathrm{C}$	-25
Max. ambient temperature $/{ }^{\circ} \mathrm{C}$	65

$\mathrm{ml}=$ Max. load $\cdot \mathrm{me}=$ Max. efficiency $\cdot \mathrm{fa}=$ Free air
cs $=$ Customer specification $\cdot \mathrm{ce}=$ Customer equipment
Subject to change

3.3 Data according to ErP Directive

	Actual	Req. 2015
01 Overall efficiency $\eta_{\text {es }} / \%$	39	29
02 Measurement category	A	
03 Efficiency category	Static	
04 Efficiency grade N	50	40
05 Variable speed drive	Yes	
06 Year of manufacture	The year of manufacture is specified on the product's rating label.	
07 Manufacturer	ebm-papst Mulfingen GmbH \& Co. KG Amtsgericht (court of registration) Stuttgart HRA 590344 D-74673 Mulfingen	
08 Type	A3G500-AF48-58	
09 Power consumption Ped / kW	0.18	
09 Air flow qv / m ${ }^{3} / \mathrm{h}$	3880	
09 Pressure increase total psf $/$ Pa	58	
10 Speed (rpm) $\mathrm{n} / \mathrm{min}^{-1}$	880	
11 Specific ratio*	1.00	
12 Recycling/disposal	Information on recycling and disposal is provided in the operating instructions.	
13 Maintenance	Information on installation, operation and maintenance is provided in the operating instructions.	
14 Additional components	Components used to calculate the energy efficiency that are not apparent from the measurement category are detailed in the CE declaration	

*Specific ratio $=1+$ pfs $/ 100000 \mathrm{~Pa}$
Data obtained at optimum efficiency level. The ErP data is determined using a motor-impeller combination in a standardized measurement setup.

3.4 Technical description

Weight	4.4 kg
Fan size	500 mm
Rotor surface	Painted black
Terminal box material	PC/ABS plastic
Electronics housing material	Die-cast aluminum
Blade material	Press-fitted sheet steel blank, sprayed with PP plastic
Number of blades	S
Airflow direction	"V"
Direction of rotation	Counterclockwise, viewed toward rotor
Degree of protection	IP54
Insulation class	"B"
Moisture (F) / Environmental (H) protection class	F3-1
Installation position	Shaft horizontal or rotor on bottom; rotor on top on request
Condensation drainage holes	On rotor side
Mode	S1
Motor bearing	Ball bearing
Technical features	- Output 10 VDC, max. 10 mA - Alarm relay - Motor current limitation - Soft start - Control input 0-10 VDC / PWM - Control interface with SELV potential safely disconnected from supply - Thermal overload protection for electronics/motor
Touch current according to IEC 60990 (measuring circuit Fig. 4, TN system)	< $=3.5 \mathrm{~mA}$
Electrical hookup	Via terminal box
Motor protection	Thermal overload protector (TOP) internally connected
Protection class	$l \begin{aligned} & \text { I (with customer connection of protective } \\ & \text { earth) }\end{aligned}$
Conformity with standards	EN 60335-1; CE

0
With regard to cyclic speed loads, note that the rotating parts of the device are designed for a maximum of one million load cycles. If you have special questions, consult ebm-papst for support.

3.5 Mounting data

\Rightarrow Secure the screws against unintentional loosening (e.g. use selflocking screws).

Strength class of screws	8.8

Any further mounting data required can be taken from the product drawing.
ebmpapst

3.6 Transport and storage conditions

\Rightarrow Use the device in accordance with its degree of protection.

Max. permitted ambient temp. for motor (transport/ storage)	$+80^{\circ} \mathrm{C}$
Min. permitted ambient temp. for motor (transport/ storage)	$-40^{\circ} \mathrm{C}$

3.7 Electromagnetic compatibility

EMC immunity to interference	According to EN 61000-6-2
EMC circuit feedback	According to EN 61000-3-2/3
EMC interference emission	According to EN 61000-6-3 (household environment)

4. CONNECTION AND STARTUP

4.1 Mechanical connection

CAUTION
Cutting and crushing hazard when removing fan from packaging
\rightarrow Carefully remove the device from its packaging, grasping it by only the blades near the hub. Strictly avoid shocks.
\rightarrow Wear safety shoes and cut-resistant safety gloves.
\Rightarrow Check the device for transport damage. Damaged devices are not to be installed.
\Rightarrow Install the undamaged device in accordance with your application.

CAUTION

Possible damage to the device

If the device slips during installation, serious damage can result.
\rightarrow Ensure that the device is securely positioned at its place of installation until all fastening screws have been tightened.

4.2 Electrical connection

DANGER
Voltage on the device
Electric shock
\rightarrow Always connect a protective earth first.
\rightarrow Check the protective earth.
DANGER
Faulty insulation
Risk of fatal injury from electric shock
\rightarrow Use only cables that meet the specified installation regulations for voltage, current, insulation material, capacity, etc.
\rightarrow Route cables so that they cannot be touched by any rotating parts.
CAUTION
Voltage
The fan is a built-in component and has no disconnecting switch.
\rightarrow Only connect the fan to circuits that can be switched off with an all-pole disconnection switch.
\rightarrow When working on the fan, secure the system/machine in which the fan is installed so as to prevent it from being switched back on.

CAUTION

Electric shock

Voltage on metal part
\rightarrow Use the device only with the cable guard and terminal box intended for it.

NOTE

Water ingress into wires or cables
Water ingress at the customer end of the cable can damage the device.
\rightarrow Make sure the end of the cable is connected in a dry environment.

(1)
Only connect the device to circuits that can be switched off with an all-pole disconnection switch.

4.2.1 Requirements

\Rightarrow Check whether the data on the nameplate match the connection data.
\Rightarrow Before connecting the device, make sure the power supply matches the device voltage.
\Rightarrow Only use cables designed for the current level indicated on the nameplate.
For determining the cross-section, note the sizing criteria according to EN 61800-5-1. The protective earth must have a cross-section equal to or greater than that of the phase conductor.
We recommend the use of $105^{\circ} \mathrm{C}$ cables. Ensure that the minimum cable cross-section is at least
AWG $26 / 0.13 \mathrm{~mm}^{2}$.
Ground conductor contact resistance according to EN 60335
Compliance with the impedance specifications according to EN 60335 for the protective earth connection circuit must be verified in the end application.
Depending on the circumstances of installation, it may be necessary to connect an additional protective earth conductor to the extra protective earth terminal on the device.

4.2.2 Reactive currents

Because of the EMC filter integrated for compliance with EMC limits (interference emission and immunity to interference), reactive currents can be measured in the supply line even when the motor is at a standstill and the line voltage is switched on.

- The values are typically less than 50 mA .
- At the same time, the effective power in this operating state (operational readiness) is typically < 2 W .

4.2.3 Residual current circuit breaker (RCCB)

-

Only pulse-current sensitive and/or universal residual current devices (type A or B) are permitted. As with variable frequency drives, residual current devices cannot provide personal safety while operating the device. When the device's power supply is switched on, pulsed charging currents from the capacitors in the integrated EMC filter can lead to the residual current devices tripping without delay. We recommend the use of residual current circuit breakers with a trip threshold of 300 mA and delayed tripping (super-resistant, characteristic K).

4.2.4 Locked-rotor protection

Due to the locked-rotor protection, the starting current (LRA) is equal to or less than the nominal current (FLA).

4.3 Connection in terminal box

4.3.1 Preparing cables for connection

Only strip the cable as far as necessary, ensuring that the cable gland is sealed and there is no strain on the connections. For tightening torques, see Chapter 3.1 Product drawing.

NOTE
Tightness and strain relief are dependent on the cable used.
\rightarrow This must be checked by the user.

4.3.2 Connecting wires to terminals

WARNING

Live terminals and connections even with device switched off
Electric shock
\rightarrow Wait five minutes after disconnecting the voltage at all poles before opening the device.
\Rightarrow Remove the cap from the cable gland.
Only remove caps where cables are fed in.
\Rightarrow Route the wire(s) (not included in scope of delivery) into the terminal box.
\Rightarrow Connect the wires to the corresponding terminals.
Use a screwdriver to do so.
When connecting, ensure that no wire ends fan out.
\Rightarrow Insert the leads until they meet resistance.
\Rightarrow Seal the terminal box.

4.3.3 Cable routing

Water must be prevented from reaching the cable gland along the cable.

Fans installed lying flat

Make sure the cable is routed in a U-shaped loop.

Fig. 2: Fan installed lying flat, cable routed in a U-shaped loop.

Fans installed upright

When routing the cable, make sure that the cable glands are located at the bottom. The cables must always be routed downward.

Fig. 3: Cable routing for fans installed upright.

4.4 Connection diagram

Customer circuit

Drawing preliminary!

No.	Conn.	Designation	Color	Function/assignment
1	1,2	PE	green/ yellow	Protective earth
1	3	N	blue	Power supply, neutral conductor, $50 / 60 \mathrm{~Hz}$
1	4	L	black	Power supply, phase, $50 / 60 \mathrm{~Hz}$
1	5	COM	white 1	Floating status contact, break for failure (2 A, max. $250 \mathrm{VAC}, \mathrm{min} .10 \mathrm{~mA}, \mathrm{AC} 1$)
1	6	NC	white 2	Floating status contact, break for failure
2	8	0-10 V	yellow	Control input, set value 0-10 VDC, impedance 100 kOhm , SELV
2	11	10 VDC	red	Voltage output 10 VDC ($\pm 3 \%$), max. 10 mA , power supply for external devices (e.g. potentiometers), SELV
2	12	GND	blue	Reference ground for control interface, SELV

4.5 Opening additional cable glands

A second cable gland opening can be made in the terminal box.

WARNING

In the event of a fault, the cable gland is energized Electric shock
\rightarrow Do not use metal cable glands with plastic terminal boxes.
\Rightarrow Screw the cable gland into the precut thread using a wrench. When doing so, take note of the tightening torques; see Chapter 3.1 Product drawing.
\Rightarrow Remove the plastic tab that fell off inside the terminal box when it was penetrated.

Fig. 4: Cable gland opening
NOTE
Tightness and strain relief are dependent on the cable used.
\rightarrow This must be checked by the user.

4.6 Checking connections

\Rightarrow Ensure isolation from supply (all phases).
\Rightarrow Make sure a restart is impossible
\Rightarrow Check the cables for proper fit.
\Rightarrow Screw the terminal box cover back on again. Terminal box tightening torque, see Chapter 3.1 Product drawing.
\Rightarrow Route the cables in the terminal box so that the terminal box cover closes without resistance.
\Rightarrow Use all screw plugs. Insert the screws by hand to avoid damage to the threads.
\Rightarrow Make sure the terminal box is completely closed and sealed and that all screws and cable glands have been properly tightened.

4.7 Switching on the device

The device may only be switched on if it has been installed properly and in accordance with its intended use, including the required safety mechanisms and professional electrical hookup. This also applies for devices which have already been equipped with plugs and terminals or similar connectors by the customer.

WARNING

Hot motor housing
Risk of fire
\rightarrow Ensure that no combustible or flammable materials are located close to the fan.
\Rightarrow Before switching on, check the device for visible external damage and make sure the protective devices are functional.
\Rightarrow Check the fan's air flow paths for foreign matter and remove any foreign matter found.
\Rightarrow Apply the nominal supply voltage.
\Rightarrow Start the device by changing the input signal.

4.8 Switching off the device

Switching off the device during operation:
\Rightarrow Switch off the device via the control input.
\Rightarrow Do not switch the motor (e.g. in cyclic operation) on and off via power supply.
Switching off the device for maintenance:
\Rightarrow Switch off the device via the control input.
\Rightarrow Do not switch the motor (e.g. in cyclic operation) on and off via power supply.
\Rightarrow Disconnect the device from the power supply.

5. INTEGRATED PROTECTIVE FEATURES

The integrated protective functions cause the motor to switch off automatically in the event of the faults described in the table.

Fault	Safety feature description/ function
Rotor position detection error	An automatic restart follows.
Blocked rotor	After the blockage is removed, the motor restarts automatically.
Line undervoltage (line voltage outside of permitted nominal voltage range)	\Rightarrow If the line voltage returns to permitted values, the motor restarts automatically.

6. MAINTENANCE, MALFUNCTIONS, POSSIBLE CAUSES AND REMEDIES

Do not perform any repairs on your device. Send the device to ebmpapst for repair or replacement.

WARNING

Live terminals and connections even with device switched off

Electric shock

\rightarrow Wait five minutes after disconnecting the voltage at all poles before opening the device.

CAUTION

If control voltage or a stored speed set value is applied, the motor will restart automatically, e.g. after a power failure.
Risk of injury
\rightarrow Keep out of the device danger zone.
\rightarrow When working on the device, switch off the line voltage and ensure that it cannot be switched back on.
\rightarrow After working on the device, remove any tools or other objects from the device.

0If the device is out of use for some time, e.g. when in storage, we recommend switching it on for at least two hours to allow any condensation to evaporate and to move the bearings.

Malfunction/fault	Possible cause	Possible remedy
Impeller not running smoothly	Imbalance in rotating parts	Clean the device; replace it if imbalance persists after cleaning. Make sure no weight clips are removed during cleaning.
Motor not turning	Mechanical blockage	Switch off, isolate from supply and remove mechanical blockage.
	Line voltage faulty	Check line voltage, restore power supply, apply control signal.
Isolate from supply, correct connection; see connection diagram.		
Faulty connection		

	Ambient temperature too high	Reduce the ambient temperature. Reset by reducing control input to 0.
	Impermissible point of operation	Correct the operating point. Let the device cool down.

In the event of further malfunctions, contact ebm-papst.

6.1 Cleaning

NOTE

Damage to the device during cleaning
Malfunction possible
\rightarrow Do not clean the device using a water jet or high-pressure cleaner.\# Do not use any acid, alkali or solventbasedcleaning agents.\# Do not use any pointed or sharpedged objects for cleaning

6.2 Safety inspection

NOTE

High-voltage test

The integrated EMC filter has Y capacitors. The tripping current is exceeded when AC testing voltage is applied.
\rightarrow Test the device with DC voltage when you perform the legally required high-voltage test. The voltage to be used corresponds to the peak value of the AC voltage required by the standard.

What to check	How to check	How often	What action?
Contact protection cover for intactness or damage	Visual inspection	At least every 6 months	Repair or replacement of device
Device for damage to blades and housing	Visual inspection	At least every 6 months	Replacement of device
Fastening the cables	Visual inspection	At least every 6 months	Fasten
Insulation of cables for damage	Visual inspection	At least every 6 months	Replace cables
Tightness of cable gland	Visual inspection	At least every 6 months	Retighten, replace if damaged
Condensation drainage holes for clogging, where necessary	Visual inspection	At least every 6 months	Open holes
Welds for crack formation	Visual inspection	At least every 6 months	Replace device

6.3 Disposal

For ebm-papst, environmental protection and resource preservation are top priority corporate goals.
ebm-papst operates an environmental management system which is certified in accordance with ISO 14001 and rigorously implemented around the world on the basis of German standards.
Right from the development stage, ecological design, technical safety and health protection are fixed criteria.
The following section contains recommendations for ecological disposal of the product and its components.

6.3.1 Country-specific legal requirements

NOTE
Country-specific legal requirements
Always observe the applicable country-specific legal regulations with regard to the disposal of products or waste occurring in the various phases of the life cycle. The corresponding disposal standards are also to be heeded.

6.3.2 Disassembly

Disassembly of the product must be performed or supervised by qualified personnel with the appropriate technical knowledge. The product is to be disassembled into suitable components for disposal employing standard procedures for motors.

WARNING

Heavy parts of the product may drop off. Some of the product components are heavy. These components could drop off during disassembly.
This can result in fatal or serious injury and material damage.
\rightarrow Secure components before unfastening to stop them falling.

6.3.3 Component disposal

The products are mostly made of steel, copper, aluminum and plastic. Metallic materials are generally considered to be fully recyclable. Separate the components for recycling into the following categories:

- Steel and iron
- Aluminum
- Non-ferrous metal, e.g. motor windings
- Plastics, particularly with brominated flame retardants, in accordance with marking
- Insulating materials
- Cables and wires
- Electronic scrap, e.g. circuit boards

Only ferrite magnets and not rare earth magnets are used in external rotor motors from ebm-papst Mulfingen $\mathrm{GmbH} \& \mathrm{Co}$. KG.
\Rightarrow Ferrite magnets can be disposed of in the same way as normal iron and steel.
Electrical insulating materials on the product, in cables and wires are made of similar materials and are therefore to be treated in the same manner.
The materials concerned are as follows:

- Miscellaneous insulators used in the terminal box
- Power cables
- Cables for internal wiring
- Electrolytic capacitors

Dispose of electronic components employing the proper procedures for electronic scrap.
(\rightarrow Please contact ebm-papst for any other questions on disposal.

